CSA 70 W-4

Is routinely monitored for constituents in the District’s drinking water according to Federal and State laws. The tables show the results of the District’s monitoring for the period of January 1st through December 31st, 2019.

Questions about this report or concerning the water system?
Contact:
Steve Samaras
Division Manager
(760) 955-9885 or (800) 554-0565

Office Hours:
Monday through Friday 9:00 a.m. – 4:00 p.m.
Closed on Holidays

County Service Area 70 W-4 (CSA 70 W-4), a water district within the Special Districts Department (Department), Water and Sanitation Division, is a Board-governed district formed on January 14, 1980, that currently provides water service to approximately 444 customers in the community of Pioneertown.

As of July 27, 2019, the water system now consists of one well and an emergency intertie to the Hi-Desert Water District’s system and four water reservoirs with a combined capacity of 345,000 gallons. There are approximately seven miles of water line and 120 metered water connections utilizing the cellular read system.

A diligent regimen of testing and analysis for bacteriological, chemical, and radiological contaminants, along with physical qualities of the water is conducted throughout the year to monitor water quality.

It is important to keep customers informed about the quality of water delivered over the past year. This year’s annual Consumer Confidence Report (CCR), contains information about the contaminants detected in 2019. The Department’s responsibility is to provide a safe and dependable supply of drinking water.

In order to ensure that tap water is safe to drink, the U.S. Environmental Protection Agency (USEPA) and the State Water Resources Control Board, (State Board), prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health.

Additional information on bottled water is available on the California Department of Public Health website at (https://www.cdph.ca.gov/Programs/CEH/DFDCS/Pages/FDBPrograms/FoodSafetyProgram/Water.aspx).

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA’s Safe Drinking Water Hotline at 1-800-426-4791 or visit their website at https://www.epa.gov/dwstandardsregulations/drinking-water-contaminant-human-health-effects-information.

This document is not a substitute for regulations; nor is it a regulation itself. Thus, it does not impose legally-binding requirements on the State Board or the Department, and may not apply to a particular situation based upon any member of the public.

This CCR reflects changes in drinking water regulatory requirements during 2019. All water systems are required to comply with the state Total Coliform Rule. Beginning April 1, 2016, all water systems are also required to comply with the federal Revised Total Coliform Rule. The new federal rule maintains the purpose to protect public health by ensuring the integrity of the drinking water distribution system and monitoring for the presence of microbial (i.e., total coliform and E. coli bacteria). The USEPA anticipates greater public health protection as the new rule requires water systems that are vulnerable to microbial contamination to identify and fix problems. Water systems that exceed a specified frequency of total coliform occurrences are required to conduct an assessment to determine if any sanitary defects exist. If found, these must be corrected by the water system.

Steve Samaras Division Manager
“Our team of State-licensed experts work diligently to provide the essential water services to your community. This year’s CCR represents a summary of the water quality testing conducted during 2019 to protect your health.”

Trevor Leja Deputy Director
“We strive for efficiency and sustainability while promoting the safety and health of the communities we serve.”

¡MUY IMPORTANTE!
Este informe contiene información muy importante sobre su agua beber. Tradúzcalo o hable con alguien que lo entienda bien.
WATER SOURCES

Well 0: Ground Water; located in the Ames Valley Basin up until July 26, 2019
Well 1: Ground Water; located in the Ames Valley Basin up until July 26, 2019
Well 2: Ground Water; located in the Ames Valley Basin up until July 26, 2019
Well 7: Ground Water; located in the Ames Valley Basin up until July 26, 2019
Well 8: Ground Water; located in the Ames Valley Basin up until July 26, 2019

SOURCE WATER PROTECTION TIPS

Protection of drinking water is everyone’s responsibility. You can help protect your community’s drinking water source in several ways:

- Eliminate excess use of lawn and garden fertilizers and pesticides— they contain hazardous chemicals that can reach your drinking water source.
- Dispose of chemicals properly; take used motor oil to a recycling center.

The subsequent tables provide many terms and abbreviations that customers may not be familiar with. To understand these terms, the district has provided the following definitions and general information:

WATER CONSERVATION TIPS

Did you know that the average U.S. household uses approximately 400 gallons of water per day or 100 gallons per person per day? Luckily, there are many low-cost and no-cost ways to conserve water. Small changes can make a big difference—try one today and soon it will become second nature.

- Take short showers—a 5 minute shower uses 10 to 25 gallons of water compared to up to 50 gallons for a bath.
- Shut off water while brushing your teeth, washing your hair and shaving to save up to 500 gallons a month.
- Use a water-efficient showerhead. They are inexpensive, easy to install, and can save you up to 740 gallons a month.
- Fix leaking toilets and faucets.
- Teach your kids about water conservation to ensure a future generation that uses water wisely.

PUBLIC HEALTH GOAL (PHG)

The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Regulatory Action Level (AL)

The concentrations of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

UCMR4 Statement

Additional Unregulated Pollutants were added to the UCMR4 monitoring list.

SOURCES OF DRINKING WATER

- Tap water and bottled water
- Include rivers, lakes, streams, ponds, reservoirs, springs and wells.
- As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.
- Contaminants that may be present in source water are included on the following pages:

1, 2, 3-trichloropropane (1,2,3-TCP) had a notification level (NL) of 5 ppt until December 14, 2017, when the MCL of 5 ppt became effective.

Hexavalent Chromium is currently no MCL for hexavalent chromium. The previous MCL of 0.010 mg/L was withdrawn on September 11, 2017.

Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.

Maximum Contaminant Level (MCL) is the highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL) is the level of a disinfectant added for water treatment that may not be exceeded at the customer’s tap. The concentrations of a contaminant in drinking water are included on the following pages:

Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproduct of industrial processes and petroleum production, and can also come from gas stations, urban stormwater run-off, agricultural application, and septic systems.

Non-Detect (ND) laboratory analysis indicates that the constituent is not present or not tested.

Public Health Goal (PHG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

Radioactive material is any element or compound that is a radionuclide or is a nuclide of an element with an atomic number greater than 83 (Protactinium) or 89 (Actinium).

Radioactive material can be naturally occurring, or created by nuclear reactions, and is inherently hazardous due to its potential to emit ionizing radiation. Ionizing radiation is energy released by atomic nuclei in the form of particles or electromagnetic waves. Ionizing radiation can cause biological effects in living organisms, and may result in genetic damage, cancer, or other health problems.

Radioactivity is typically measured in Becquerels (Bq) or Curie (Ci) units. One Becquerel (Bq) is equal to one disintegration per second, while one Curie (Ci) is equal to 3.7 x 10^10 disintegrations per second.

TURBIDITY

Turbidity is a measure of the presence of particles in water that can affect its appearance and clarity. It is often used as a parameter to determine the effectiveness of water filtration and treatment processes.

Nephelometric Turbidity Unit (NTU) nephelometric turbidity unit is a measure of the clarity of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

WATER SOURCES

Well 0: Ground Water; located in the Ames Valley Basin up until July 26, 2019
Well 1: Ground Water; located in the Ames Valley Basin up until July 26, 2019
Well 2: Ground Water; located in the Ames Valley Basin up until July 26, 2019
Well 7: Ground Water; located in the Ames Valley Basin up until July 26, 2019
Well 8: Ground Water; located in the Ames Valley Basin up until July 26, 2019
Well 2W and Emergency Intertie: Ground Water; located in the Warren Basin

SOURCE WATER PROTECTION TIPS

Protection of drinking water is everyone’s responsibility. You can help protect your community’s drinking water source in several ways:

- Eliminate excess use of lawn and garden fertilizers and pesticides— they contain hazardous chemicals that can reach your drinking water source.
- Dispose of chemicals properly; take used motor oil to a recycling center.

The subsequent tables provide many terms and abbreviations that customers may not be familiar with. To understand these terms, the district has provided the following definitions and general information:

WATER CONSERVATION TIPS

Did you know that the average U.S. household uses approximately 400 gallons of water per day or 100 gallons per person per day? Luckily, there are many low-cost and no-cost ways to conserve water. Small changes can make a big difference—try one today and soon it will become second nature.

- Take short showers—a 5 minute shower uses 10 to 25 gallons of water compared to up to 50 gallons for a bath.
- Shut off water while brushing your teeth, washing your hair and shaving to save up to 500 gallons a month.
- Use a water-efficient showerhead. They are inexpensive, easy to install, and can save you up to 740 gallons a month.
- Fix leaking toilets and faucets.
- Teach your kids about water conservation to ensure a future generation that uses water wisely.

PUBLIC HEALTH GOAL (PHG)

The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Regulatory Action Level (AL)

The concentrations of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

UCMR4 Statement

Additional Unregulated Pollutants were added to the UCMR4 monitoring list.

SOURCES OF DRINKING WATER

- Tap water and bottled water
- Include rivers, lakes, streams, ponds, reservoirs, springs and wells.
- As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.
- Contaminants that may be present in source water are included on the following pages:
Contaminants

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Units</th>
<th>Action Level</th>
<th>PHG</th>
<th>90th Percentile</th>
<th>No. Samples, No Exceeding AL</th>
<th>Sample Year</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Coliform</td>
<td>ppb</td>
<td>0.2</td>
<td>8.4</td>
<td>10 samples, 0 exceeded AL</td>
<td>2019</td>
<td>Naturally present in the environment</td>
<td></td>
</tr>
<tr>
<td>Fecal Coliform or E. Coli</td>
<td>ppm</td>
<td>0.3</td>
<td>0.17</td>
<td>10 samples, 0 exceeded AL</td>
<td>2019</td>
<td>Human and animal fecal waste</td>
<td></td>
</tr>
<tr>
<td>E. Coli</td>
<td>ppm</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2019</td>
<td>Human and animal fecal waste</td>
<td></td>
</tr>
</tbody>
</table>

Radioactive Contaminants

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Primary MCL</th>
<th>PHG (MCLG)</th>
<th>Range of Detections</th>
<th>Average Level</th>
<th>MCL Violation</th>
<th>Sample Year</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross Alpha</td>
<td>15 pCi/L</td>
<td>0.00</td>
<td>ND–19</td>
<td>6.46</td>
<td>YES</td>
<td>2019</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Uranium</td>
<td>20 pCi/L</td>
<td>.43</td>
<td>ND–14</td>
<td>4.39</td>
<td>NO</td>
<td>2019</td>
<td>Erosion of natural deposits</td>
</tr>
</tbody>
</table>

Primary Inorganic Contaminants

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Primary MCL</th>
<th>PHG (MCLG)</th>
<th>Range of Detections</th>
<th>Average Level</th>
<th>MCL Violation</th>
<th>Sample Year</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrate as N (NO3-N)</td>
<td>10 ppm</td>
<td>10</td>
<td>ND–4.8</td>
<td>1.8</td>
<td>NO</td>
<td>2019</td>
<td>Runoff and leaching from fertilizer use; erosion of natural deposits</td>
</tr>
<tr>
<td>Fluoride (F)</td>
<td>2 ppm</td>
<td>1</td>
<td>0.16–8.3</td>
<td>1.47</td>
<td>YES</td>
<td>2019</td>
<td>Erosion of natural deposits; water additive that promotes strong teeth</td>
</tr>
<tr>
<td>Arsenic (As)</td>
<td>10 ppb</td>
<td>0.004</td>
<td>ND–100</td>
<td>15.4</td>
<td>YES</td>
<td>2019</td>
<td>Erosion of natural deposits; runoff from orchards; glass and electronic production wastes</td>
</tr>
</tbody>
</table>

Disinfectant Byproducts and Chemical Disinfectant

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Primary MCL</th>
<th>PHG (MCLG)</th>
<th>Range of Detections</th>
<th>Average Level</th>
<th>MCL Violation</th>
<th>Sample Year</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>CI RES Total (Field)</td>
<td>MRDL = 4.0 ppm</td>
<td>MRDLG = 4</td>
<td>0.01–1.63</td>
<td>0.51</td>
<td>NO</td>
<td>2019</td>
<td>Drinking water disinfectant added for treatment</td>
</tr>
<tr>
<td>Total Trihalomethanes (TTHM)</td>
<td>80 ppb</td>
<td>N/A</td>
<td>ND–23</td>
<td>12.63</td>
<td>NO</td>
<td>2019</td>
<td>Byproduct of drinking water chlorination</td>
</tr>
<tr>
<td>Total Haloacetic Acids (HAAS)</td>
<td>60 ppb</td>
<td>N/A</td>
<td>2.9</td>
<td>2.9</td>
<td>NO</td>
<td>2019</td>
<td>Byproduct of drinking water disinfection</td>
</tr>
</tbody>
</table>
Secondary Standards

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Primary MCL</th>
<th>PHG (MCLG)</th>
<th>Range of Detections</th>
<th>Average Level</th>
<th>MCL Violation</th>
<th>Sample Year</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odor Threshold</td>
<td>3 TON</td>
<td>N/A</td>
<td>1–1</td>
<td>1</td>
<td>NO</td>
<td>2019</td>
<td>Naturally occurring organic materials</td>
</tr>
<tr>
<td>Turbidity</td>
<td>5 NTU</td>
<td>N/A</td>
<td>ND–1.8</td>
<td>0.33</td>
<td>NO</td>
<td>2019</td>
<td>Soil runoff</td>
</tr>
<tr>
<td>Chloride (Cl)</td>
<td>500 ppm</td>
<td>N/A</td>
<td>59–65</td>
<td>62.3</td>
<td>NO</td>
<td>2019</td>
<td>Runoff/leaching from natural deposits; seawater influence</td>
</tr>
<tr>
<td>Specific Conductance (E.C.)</td>
<td>1600 umhosa/cm</td>
<td>N/A</td>
<td>450–1300</td>
<td>983.3</td>
<td>NO</td>
<td>2019</td>
<td>Substances that form ions when in water; seawater influence</td>
</tr>
<tr>
<td>Apparent Color</td>
<td>15 Units</td>
<td>N/A</td>
<td>ND</td>
<td>ND</td>
<td>NO</td>
<td>2019</td>
<td>Naturally occurring organic materials</td>
</tr>
<tr>
<td>Total Dissolved Solids (TDS)</td>
<td>1000 ppm</td>
<td>N/A</td>
<td>242–790</td>
<td>463.6</td>
<td>NO</td>
<td>2019</td>
<td>Runoff/leaching from natural deposits</td>
</tr>
<tr>
<td>Iron (Fe)</td>
<td>300 ppb</td>
<td>N/A</td>
<td>ND–180</td>
<td>68.5</td>
<td>NO</td>
<td>2019</td>
<td>Leaching from natural deposits; industrial wastes</td>
</tr>
</tbody>
</table>

ADDITIONAL CONSTITUENTS

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Primary MCL</th>
<th>PHG (MCLG)</th>
<th>Range of Detections</th>
<th>Average Level</th>
<th>MCL Violation</th>
<th>Sample Year</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggressive Index</td>
<td>N/A</td>
<td>N/A</td>
<td>11.3–12.3</td>
<td>11.92</td>
<td>N/A</td>
<td>2019</td>
<td>N/A</td>
</tr>
<tr>
<td>pH (Lab)</td>
<td>N/A</td>
<td>N/A</td>
<td>6.9–8.2</td>
<td>7.72</td>
<td>N/A</td>
<td>2019</td>
<td>N/A</td>
</tr>
<tr>
<td>Alkalinity, Total (as CaCO3)</td>
<td>N/A</td>
<td>N/A</td>
<td>82–390</td>
<td>284</td>
<td>N/A</td>
<td>2019</td>
<td>N/A</td>
</tr>
<tr>
<td>Bicarbonate (HCO3) (mg/L)</td>
<td>N/A</td>
<td>N/A</td>
<td>100–480</td>
<td>346.7</td>
<td>N/A</td>
<td>2019</td>
<td>N/A</td>
</tr>
<tr>
<td>Hardness, Total (as CaCO3)</td>
<td>N/A</td>
<td>N/A</td>
<td>48–130</td>
<td>80</td>
<td>N/A</td>
<td>2019</td>
<td>N/A</td>
</tr>
<tr>
<td>Total Anions (meq/L)</td>
<td>N/A</td>
<td>N/A</td>
<td>4.4–14</td>
<td>10.47</td>
<td>N/A</td>
<td>2019</td>
<td>N/A</td>
</tr>
<tr>
<td>Calcium (Ca) (mg/L)</td>
<td>N/A</td>
<td>N/A</td>
<td>16–42</td>
<td>26.3</td>
<td>N/A</td>
<td>2019</td>
<td>N/A</td>
</tr>
<tr>
<td>Magnesium (Mg) (mg/L)</td>
<td>N/A</td>
<td>N/A</td>
<td>2–5.7</td>
<td>3.27</td>
<td>N/A</td>
<td>2019</td>
<td>N/A</td>
</tr>
<tr>
<td>Potassium (K) (mg/L)</td>
<td>N/A</td>
<td>N/A</td>
<td>2.1–2.9</td>
<td>2.63</td>
<td>N/A</td>
<td>2019</td>
<td>N/A</td>
</tr>
<tr>
<td>Sodium (Na) (mg/L)</td>
<td>N/A</td>
<td>N/A</td>
<td>41–310</td>
<td>210.3</td>
<td>N/A</td>
<td>2019</td>
<td>N/A</td>
</tr>
<tr>
<td>Manganese (Mn) (mg/L)</td>
<td>50 ppb</td>
<td>N/A</td>
<td>ND</td>
<td>ND</td>
<td>NO</td>
<td>2019</td>
<td>N/A</td>
</tr>
<tr>
<td>Zinc (Zn) (mg/L)</td>
<td>5000 ppb</td>
<td>N/A</td>
<td>ND–51</td>
<td>17</td>
<td>NO</td>
<td>2019</td>
<td>N/A</td>
</tr>
<tr>
<td>Sulfate (SO4) (mg/L)</td>
<td>500 ppm</td>
<td>N/A</td>
<td>41–190</td>
<td>137</td>
<td>NO</td>
<td>2019</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Detection of Unregulated Constituents

<table>
<thead>
<tr>
<th>Chemical or Constituent (CCR Units)</th>
<th>Sample Date</th>
<th>Average Level</th>
<th>Range of Detections</th>
<th>Notification Level</th>
<th>Health Effects Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vanadium (V) (ppb)</td>
<td>2019</td>
<td>1.8</td>
<td>ND–5.4</td>
<td>15</td>
<td>The babies of some pregnant women who drink water containing vanadium in excess of the notification level may have an increased risk of developmental effects, based on studies in laboratory animals.</td>
</tr>
<tr>
<td>Boron (B) (ppm)</td>
<td>2019</td>
<td>1.18</td>
<td>0.13–1.70</td>
<td>1</td>
<td>The babies of some pregnant women who drink water containing boron in excess of the notification level may have an increased risk of developmental effects, based on studies in laboratory animals.</td>
</tr>
</tbody>
</table>

Synthetic Organic Contaminants including Pesticides and Herbicides

<table>
<thead>
<tr>
<th>Contaminant (CRR units)</th>
<th>Sample Date</th>
<th>Average Level (PPM)</th>
<th>MCL (PPM)</th>
<th>PHG (PPB)</th>
<th>MCL Violation</th>
<th>Health Effects Language</th>
<th>Major Source in Drinking Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2,3-Trichloropropane</td>
<td>2019</td>
<td>ND</td>
<td>0.000005</td>
<td>0.0007</td>
<td>NO</td>
<td>Some people who drink water containing 1,2,3 trichloropropane in excess of the MCL over many years may have an increased risk of getting cancer.</td>
<td>Discharge from industrial and agricultural chemicals factories; leaching from hazardous waste site; used as cleaning and maintenance solvent, paint and varnish remover, and cleaning and degreasing agent; byproduct during the production of other compounds and pesticides.</td>
</tr>
</tbody>
</table>
SHOULD CUSTOMERS BE CONCERNED?

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbiological contaminants are available from the safe drinking water hotline (1-800-426-4791).

Secondary MCLs do not have PHGs or MCLGs because secondary MCLs are set to protect the aesthetics of water and PHGs and MCLGs are based on health concerns.

Some people who drink water containing fluoride in excess of the federal MCL of 4mg/L over many years may get bone disease, including pain and tenderness of the bones. Children who drink water containing fluoride in excess of the State MCL of 2 mg/L may get mottled teeth. The Department does not add any fluoride to the water system. Results are from naturally occurring deposits.

Some people who drink water containing arsenic in excess of the MCL over many years may experience skin damage or circulatory system problems, and may have an increased risk of getting cancer.

Certain minerals are radioactive and may emit a form of radiation known as alpha radiation. Some people who drink water containing alpha emitters in excess of the MCL over many years may have an increased risk of getting cancer.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Special Districts Department, Water and Sanitation Division is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available at https://www.epa.gov/ground-water-and-drinking-water/basic-information-about-lead-drinking-water.

Infants below the age of six months who drink water containing nitrate in excess of the MCL may quickly become seriously ill and, if untreated, may die because high nitrate levels can interfere with the capacity of the infant’s blood to carry oxygen. Symptoms include shortness of breath and blueness of the skin. High nitrate levels may also affect the oxygen-carrying ability of the blood of pregnant women.

Some people who drink water containing alpha emitters (Gross Alpha) in excess of the MCL may have an increased risk of getting cancer.

• Compliance with the uranium MCL is based on the Running Annual Average (RAA). The highest detection of uranium was above the MCL; and the RAA, inclusive of the high detection, was still above the MCL and therefore not in compliance.

• The State of California Water Resources Control Board approved grant funding in the amount of $5.4M in order to construct a pipeline to import potable water to Pioneertown. On November 6, 2018, the San Bernardino County Board of Supervisors approved a general fund loan of $5.6M and awarded a contract to Sukut Construction to build the pipeline. The project has been completed and the new system was activated on July 27, 2019.